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Abstract

Near-infrared (NIR) diffuse reflectance spectroscopy was employed in the method development and validation of
a moisture assay for the novel antifungal caspofungin acetate. Spectra were obtained over the entire spectral region
available (950–1650 nm) using an InGaAs photodiode array detector equipped with a diffuse reflectance probe. No
sample pre-treatment was required and the analysis time was less than 1 min. Primary reference data were obtained
using a Karl Fischer (KF) titration (coulometric, volumetric or both). The investigated range of water content was
2.6–9.9% (w/w) with a standard error of prediction (SEP) of 0.2%. The predictive capabilities of the partial
least-squares (PLS) regression calibration model used in the moisture assay were verified using independent test sets.
The NIR predicted values of the developed method were equivalent to the reference method sets and the prediction
error was equivalent to the reference method error. These results reveal that the predictive model constructed by
means of a PLS regression is valid, rugged and could be used to determine moisture levels on-line in caspofungin
acetate drug substance. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The determination of water content in pharma-
ceuticals is an important part of the manufactur-
ing and storage processes, as some compounds
may degrade rapidly under high or low moisture

conditions. In recent studies, it was found that
moisture can diminish the efficacy of drug com-
pounds and in some cases is responsible for the
formation of degradation products [1]. Recent
advances in the study of near-infrared (NIR)
spectrometry have led to quantitative determina-
tion of not only water, but also other constituents
(i.e. organic solvents). These advances are based
largely on the availability of sophisticated statisti-
cal and chemometric methods, and powerful com-
puters, and software that can account for all the
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natural vibrational combinations and overtones
present in the NIR region (780–2500 nm) [2].
These absorptions are broader, less intense and
more difficult to assign to functional groups com-
pared with bands in the mid-IR region (2500–
25 000 nm; 4000–400 cm−1). On the other hand,
the NIR absorptions are linear over a wide dy-
namic range and samples can be measured in
reflectance or transmission mode without any
sample pre-treatment.

All the basic vibrations of the water molecule
are mid-IR and NIR active with absorbance max-
ima at 2700, 1900, and around 1400 nm [3]. Due
to hydrogen bonding, these bands are broad and
may experience wavelength shifts due to matrix
interactions. The significant absorptivity of
water in the NIR region of the spectrum (com-
pared with other substances) makes the technique
ideal for the determination of moisture content
[4,5]. Also it has been shown that water absorbs
at all NIR wavelengths [1]. This effect makes
partial least-squares (PLS) regression a particu-
larly good chemometric method for the quantita-
tive analysis of water, because, it uses the entire
NIR spectrum in order to determine its concen-
tration.

In this work, we report the development and
validation of a NIR method that could provide an
accurate and fast moisture determination for this
novel antifungal drug substance without any sam-
ple pre-treatment. The challenge was to develop a
non-invasive method for moisture determination
in caspofungin acetate, which has a property,
heretofore unseen in water analyses, of quickly
changing its water content based on the atmo-
sphere’s percent relative humidity. NIR testing
during manufacturing only becomes practical
when a large number of batches of material are to
be tested. The time and effort involved in develop-
ing the method would not be justified if only a
few batches were in need of testing. A non-inva-
sive spectroscopic method would alleviate the
need for sample preparation and manual han-
dling, as is necessary in the currently used Karl
Fischer (KF) analysis. In general, no matter how
simple the preparation, each step requires an ana-
lyst’s time and provides an opportunity for ana-
lyst error.

2. Experimental

2.1. Materials

Dry KBr (99+% pure FT-IR grade from Spec-
tra-Tech, Inc., Shelton, CT) was used as a refer-
ence material for diffuse reflectance
measurements. The caspofungin acetate drug sub-
stance was synthesized by Merck Research Labo-
ratories, Merck & Co., Inc., Rahway, NJ. The
water titrant in the volumetric KF determination
was Hydranal®-Composite 5 (Riedel-de Haën
AG, Seelze, Germany).

2.2. Samples

A total of 49 samples of caspofungin acetate
from 13 different batches were used in this study.
The samples were stored in glass vials at −70 or
−20 °C when not in use. At ambient tempera-
ture, the gain or loss of water in caspofungin
depends on the percent relative humidity (%RH)
of the environment in which the sample is stored
or handled. Measures were taken to minimize the
time exposed to the atmosphere, and careful mea-
surements of the humidity levels were taken in
order to evaluate any errors resulting from the
hygroscopicity of caspofungin. The moisture level
was deliberately increased or decreased by expos-
ing the samples to environments of varying rela-
tive humidities. The moisture content of the
resulting samples was found to vary between 2.5
and 15.0% (w/w).

2.3. Instrumentation

NIR spectra (950–1650 nm) were recorded us-
ing an optical solutions PS-2 portable diode array
spectrometer that included a thermoelectrically
cooled 256-element InGaAs photodiode array de-
tector and an optically stabilized tungsten–halo-
gen light source (Optical Solutions, Folsom, CA).
An FDR-320 series diffuse reflectance probe (Ax-
iom Analytical Inc., Irvine, CA) was connected to
the spectrometer via a bifurcated fiber-optic bun-
dle (2 m in length) equipped with SMA fiber optic
connectors. The spectral range of the FDR-320
probe was 0.9–2.5 �m, and the length and diame-
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ter were 33 and 25 mm, respectively. The active
diameter of the fiber optic was 2.4 mm at the
probe and 1.7 mm at the source and detector
terminals. The light source drift was 0.0005 AU
over a period of 6 h. The spectrograph resolution,
spectral bandwidth and the wavelength stability
were 3 and 7 and �0.05 nm, respectively. The
probe is capable of obtaining spectra up to a
maximum distance of approximately 6 mm from a
sample. In this work the probe was operated in a
contact mode with the sample or the sample
container (glass or ACLAR® 22C liner). The ref-
erence KF titrations were done using a Metrohm
701 KF Titrino and 703 Ti Stand (Brinkman
Instruments, Inc., Westbury, NY).

2.4. Procedure

The NIR probe was mounted on a ring stand
with a clamp in a near vertical position. Each
spectrum was obtained by averaging 20 full spec-
tral (950–1650 nm) scans. During the data collec-
tion the amount of time spent on each element of
the array was 0.1 s (integration time). A back-
ground scan and a reference spectrum were col-
lected every time the spectrometer was turned-on.
A background scan is a record of incident light
that may enter the fiber optic bundle, probe and
detector. The background spectrum represented
0% transmittance and was collected by blocking
the source lamp. The reference spectrum repre-
sented 100% transmittance and was collected by
presenting the probe to a dry KBr powder placed
on the top of an upside-down glass beaker. The
sample spectra were collected in the same way,
replacing the KBr powder with caspofungin ace-
tate. The glass beaker, spatula and probe were
washed after each sample presentation with dry
methanol and dried under nitrogen. Spectra were
recorded by the instrument data system.

Coulometric and/or volumetric KF titrations
were used as reference methods for all the mois-
ture determinations. In the coulometric KF titra-
tion, HYDRANAL®-Coulomat A (anolyte) and
HYDRANAL®-Coulomat (catholyte) were used
in the coulometric titration cell. Following a
‘blank titration’ (titration of the cell to dryness)
the sample was added and titrated to dryness. In

the volumetric method, analytical grade anhy-
drous methanol was used as the working medium
in the titration vessel. A one-component KF
reagent, HYDRANAL®-Composite 5, used and
consumed the equivalent of 5 mg of water per ml
titrant.

2.5. Software

In all cases NIR data was processed using the
GRAMS/32 V.4.14 (Galactic Industries Corpora-
tion, Salem, NH) program. For the calibration
and prediction of water in caspofungin, PLS re-
gression and multiple linear regression (MLR)
methods were applied [6]. The chemometric soft-
ware used to build the calibration model and
predict the unknown moisture level was PLSPLUS/

IQ V.3.03 (Galactic Industries Corporation),
which is based on the published works of Kowal-
ski and Seasholtz [7] and Haaland and Thomas
[8]. The calibration equations for all models were
stored electronically and validated by generating
results on known, independent lots of
caspofungin.

3. Results and discussion

3.1. Near-IR calibration using partial-least
squares regression

When infrared light is projected onto a sample
of caspofungin acetate that contains water, some
of it is selectively absorbed while the remainder is
scattered. Vibrational excitation of the �OH
groups in the water molecule and �CH and �OH
groups in the caspofungin molecular structure
results from this absorption. The main features of
the caspofungin acetate spectrum in the region
from 950 to 1650 nm are attributed to the second
O�H overtone bands from the hydroxyl groups in
caspofungin, the second O�H overtone of the
O�H stretching in water, and the second C�H
overtone of the methyl groups in caspofungin.
With greater levels of moisture in caspofungin,
more absorption occurs with a corresponding re-
duction in the amount of diffusely reflected light.
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The spectra were evaluated using PLS regres-
sion and MLR methods [7,8]. These two chemo-
metric methods are the most widely used
multivariate methods in building calibration mod-
els. The MLR method assumes that concentration
is a function of absorbance and the analysis is
performed using selected wavelengths having the
highest correlation. This number is relatively
small, because, it cannot exceed the number of
calibration mixtures used in the analysis. Deter-
mining which and how many wavelengths to in-
clude in the model is very important and must be
done with great care in order to develop a robust
method. In addition, co-linearity problems could
affect the accuracy of the model when too many
wavelengths are included in the analysis.

PLS is a full-spectrum method that extracts
principal components from whole wavelength re-
gions and correlates the spectral data in these
regions with the concentration of the constituent
of interest. One of the main advantages of PLS is
that the resulting spectral vectors are directly
related to the water level, because, the spectral
decomposition and the regression against the con-
centration of water occur simultaneously and not
as two separate steps. In contrast, in MLR the
vectors merely represent the most common spec-
tral variations of the data ignoring the relation to
the water concentration until the final regression.
Another advantage of PLS is that, because it is a
full-spectrum method, efficient outlier detection
methods are available from spectral residuals. Fi-
nally, the use of a photodiode array detector
rather than a conventional scanning spectropho-
tometer eliminated the wavelength shift problems
and resulted in more rugged PLS calibration mod-
els. The most accurate model using the PLS re-
gression chemometric method was constructed by
using, (a) the entire spectral region (950–1650
nm) and (b) a process that determined what type
of data treatment produced a model with the best
possible predictive capabilities.

3.2. Calibration model using cross-�alidation

Samples from 13 different lots of caspofungin,
synthesized over a 3-year period, were used in this
study. From these, 33 samples were used to build

the calibration model and 16 samples were used to
validate it. The final calibration model was con-
structed using the spectra and KF values from all
the 33 samples that where included in the initial
calibration set. The first step in these multivariate
analyses involves mean centering of the entire
spectrum in order to normalize all the spectra.
Mean centering means that the average spectrum
is calculated from all the calibration spectra and
then subtracted from every calibration spectrum.
As a result, small shifts in the instrument’s perfor-
mance will not affect the calibration. It also serves
the purpose of removing redundant information,
enhancing the sample-to-sample differences and
improving the overall ruggedness of the model.

All the spectra were processed using a
Savitzky–Golay second derivative function utiliz-
ing 11 data-points. The purpose of generating the
second derivative of each spectrum is to minimize
any effects of baseline shifting due to particle size
differences or other solid-state characteristics [9].
The advantage of looking at the derivative curve
is that, it highlights much of the hidden informa-
tion within the spectrum. A simple comparison of
two spectra with their derivatives can illustrate
this point clearly. The spectra of two samples with
water levels of approximately 6 and 9%, respec-
tively, are shown in Fig. 1A. The relevant infor-
mation to be extracted from these spectra is not
immediately apparent. However, the second
derivatives of these two spectra (Fig. 1B) reveal
many of the hidden spectral features. The value of
the derivative function at a particular wavelength
is the absolute intensity due solely to the molecu-
lar absorption, since the background absorption is
subtracted out. The number of data points used in
the derivation minimizes the influence of noise in
the calibration model and increases the robustness
of the model. The use of less than 11 data-points
contributed to noise peaks in the second deriva-
tive spectrum, while more than 11 data-points
smoothed out the important peak features con-
taining the spectral influence of water.

Cross-validation is a calibration technique that
removes one sample and predicts its value on the
basis of a model of all the other samples. This
technique allows us to calculate the number of
factors to be used in the treatment of each spec-
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trum. Factors are the number of loading vectors
used by the model to evaluate and map an un-
known spectrum against the vector map of all the
known spectra already in the calibration set. The
number of factors employed in the treatment of
each spectrum has a similar effect as the number
of data-points described previously. A model that
includes more or less factors than are actually
necessary to predict the constituent concentra-
tions is called ‘over-fit’ or ‘under-fit’, respectively.

In this study the optimum number of factors
was calculated by using the predicted residual
error sum of squares (PRESS) value for every
possible factor. The PRESS value was the sum of
the squared difference between the predicted and
the known concentrations. It was calculated by
building calibration models with different number
of factors and then predicting some samples of
known concentration against the model. The
number of factors where the PRESS plot reached

Fig. 1. (A) Example of spectral baseline shifting. (B) Example of the corrective capabilities of second derivative data treatment of
two samples with water levels of approximately 6 and 9% (w/w).
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Table 1
Calibration model information for moisture assay in caspofun-
gin

33Number of samples (spectra)
Number of factors 3

0.9003Correlation coefficient (R)
0.54%Standard error of cross-validation

Range of calibration 2.63–9.89%

Fig. 2. Full cross-validation model plotting the KF values vs.
the predicted values using PLS regression.

a minimum was three and was chosen as the
optimum number of factors for the calibration
model described in this study. Building models
with more or less than three factors and applying
these models to predict moisture levels further
supported this result.

Other parameters such as spectral region, re-
moval of outliers, variance scaling, and baseline
correction were examined with respect to their
effects on moisture prediction. Any attempt to use
only a particular region instead of the full spec-
trum decreased the predictive capabilities of the
model. The PLS regression analysis of the caspo-
fungin acetate spectra favors the water-influenced
wavelengths around 1475 nm, as indicated by the
factor weights in this area. MLR analysis using
multiple wavelengths around this region did not
predict the moisture levels as accurately as the
PLS regression analysis. This is a result of the
water influence over the entire NIR spectrum of
caspofungin. Also, attempts to remove outliers
from the calibration model resulted in worse than
expected predictions. None of the other parame-
ters had a positive influence on the predictions, so
they were not applied to the calibration model.
These results emphasized the need to incorporate
into the model all possible moisture concentra-
tions and manufacturing process variables in or-
der to achieve a robust calibration. Overall, PLS
models gave more accurate predictions due to
their ability to treat interfering and overlapping
peaks of complex matrices better than MLR [10].

The details of the most successful calibration
model using PLS regression analysis are shown in
Table 1. This calibration was represented graphi-
cally by plotting the KF values of the samples
whose spectra were used to build the calibration
model versus the predicted values by the model
based on those same spectra (Fig. 2).

3.3. Validation of the near-IR calibration model

3.3.1. Measurement precision
The measurement precision of the instrument

and the probe was determined by recording ten
spectra from the same sample presentation. The
results are shown in Table 2. The difference be-
tween the predicted (NIR) and actual (KF) water
level for a sample is defined as the residual. As the
predictive capability of the model is increased the
residuals approach zero. The standard deviation
(S.D.) of the associated residuals (NIR–KF)
shown in Table 2 was 0.08.

Table 2
Measurement precision of the NIR calibration model

ResidualsNIRKF (% water)

8.16 8.06 −0.10
−0.068.108.16

0.008.16 8.16
−0.068.16 8.10
−0.207.968.16

7.988.16 −0.18
8.16 −0.177.99

7.93 −0.238.16
8.16 −0.207.96

7.938.16 −0.23
Bias −0.14

0.08S.D.
R.S.D. (%) 1.00
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Table 3
Method precision of the NIR calibration model

KF (% water) ResidualsNIR

8.11 8.01 −0.10
0.048.158.11
0.228.11 8.33
0.208.318.11

8.11 0.348.45
0.218.328.11

8.348.11 0.23
8.448.11 0.33

0.208.318.11
8.188.11 0.07

0.17Bias:
0.13S.D.
1.57R.S.D. (%)

Fig. 3. Accuracy of the NIR calibration model using ten
samples from lots A–D used in the calibration study.

trolled. The effect of the sample-thickness
variability in the prediction was demonstrated by
increasing the amount of powder presented to the
probe. The thickness of eight aliquots from the
same lot that were presented to the probe was
increased incrementally from 0.5 to 5.0 mm. Spec-
tra were recorded until no more visible light from
the probe was observed to penetrate through the
sample at 5.0 mm thickness. The residuals (NIR–
KF) ranged from −0.97 to 0.14 and are shown in
Table 5. The decrease in error of prediction due to
the powder’s thickness is an obvious and straight-
forward trend.

3.3.2. Method precision
The method precision was demonstrated by

taking ten independent measurements of the same
lot of caspofungin. In each single measurement
the sample was introduced into the probe and the
spectrum was recorded. After each spectrum col-
lection the probe was cleaned and a new aliquot
of the same sample was introduced into the probe
for the next measurement. The residuals (NIR–
KF) ranged from −0.10 to 0.34 as shown in
Table 3. The error associated with this technique
of recording NIR spectra was quantified with a
S.D. of 0.13.

3.3.3. Accuracy
The accuracy of the calibration model was

demonstrated using ten samples from four lots
(A–D) of caspofungin that were previously used
to build the calibration model. Their KF values
were determined again during the recording of
their NIR spectra. The calibration model was
then used to predict the moisture levels from these
new spectra. The plot of actual (KF) versus pre-
dicted (NIR) values is shown in Fig. 3 (R2=
0.992). The residuals (NIR–KF) ranged from
−0.21 to 0.51 with a S.D. of 0.20 as shown in
Table 4.

3.3.4. Thickness of sample
The thickness of the sample that the light pene-

trates is an important variable and easily con-

Table 4
Accuracy of NIR calibration model

Lot KF (% water) NIR Residuals

A 0.124.023.90
5.12B 5.44 0.32

0.15C 6.256.10
6.38A 6.89 0.51

A 7.26 7.56 0.30
C 8.23 8.44 0.21

8.29B 8.64 0.35
0.049.169.12D

9.89C 9.95 0.06
B 9.78 9.78 −0.21

Bias 0.19
S.D. 0.20
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Table 5
Sample-thickness effects on the prediction

Sample thickness KF (% water) NIR Residual
(mm)

8.320.5 −0.979.29
8.34 −0.951.0 9.29
8.579.29 −0.721.5

9.292.0 8.91 −0.38
9.202.5 −0.099.29
9.239.29 −0.063.0

9.294.0 9.43 −0.14
9.275.0 −0.029.29

Fig. 4. Verification of the predictive capabilities of the NIR
calibration model using six samples from lots E–I that were
not used in the calibration study.

3.3.5. Verification (prediction) of the near-IR
calibration model

The final test on the validity and accuracy of
the calibration model required the moisture pre-
diction of samples not included in the calibration
set. These samples represented by caspofungin
lots synthesized by different chemical processes
and they were not included in the calibration set.
In this study six samples from five different lots
(E–I) that were not included in any of the previ-
ous studies were used as the verification set. The
residuals (NIR–KF) of this verification set ranged
from −0.27 to 0.11 with a S.D. of 0.10 as shown
in Table 6. The plot of actual (KF) versus pre-
dicted (NIR) values is shown in Fig. 4.

3.3.6. Prediction through the caspofungin
container system

The feasibility of taking measurements through
glass or ACLAR® 22C liner was investigated. It
was found that NIR spectra can readily be

recorded through the walls of glass vials or
ACLAR® 22C liner with minimal interference or
spectral scatter from the glass or the liner. The
average prediction results using the ‘through-liner’
and ‘through-glass’ techniques were 8.32 and 8.34,
respectively (Table 7). These results are in agree-
ment with the KF result of 8.31, and the predic-
tion result of 8.30 obtained using the directly in
contact with the sample technique as described
previously. The residuals (NIR–KF) ranged from
−0.05 to 0.10 with a standard deviation of 0.08.
Even though the calibration model did not in-
clude any spectra taken through the liner, it was
possible to predict the water level accurately by
recording a reference spectrum through the liner
and collecting spectra in that manner. The agree-

Table 6
Prediction of the NIR calibration model

Lot KF (% water) NIR Residuals

0.11E 6.796.68
7.20F 7.22 0.02

F 7.44 7.32 −0.12
0.048.40G 8.36

8.97H 8.80 −0.17
I 9.45 9.18 −0.27

−0.02Bias
S.D. 0.10

Table 7
Spectral prediction through ACLAR® 22C liner and glass

KF Spectral acquisition
(% water)

In-contact Through-liner Through-glass

8.34 8.32 8.268.31
8.298.31 8.38 8.41
8.268.31 8.26 8.36

Average 8.32 Average 8.34Average 8.30
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ment of these results was another demonstration
of the predictive capabilities of the calibration
model.

3.3.7. Ruggedness of the calibration model
The age of the caspofungin samples ranged

from 2 months to 3 years. Thus, variability due
to compound age, storage conditions and the
synthetic scheme were built into the calibration
model. This is certainly a positive characteristic
of the prediction model if one is going to use
this model to determine water in older materials
or materials made by different chemistry routes
employed throughout the development and
manufacturing.

During the recording of spectra for the cali-
bration model, the amount of powder that was
presented to the probe was varied depending on
the available amount (mg to g) of that particu-
lar lot of caspofungin. This variable is easily
controlled during construction of the calibration
model. Samples of greater thickness produce su-
perior diffuse reflectance spectra and thus mini-
mize predictive error.

The plot of the calibration model that was
created does not fit a perfect line (Fig. 2), but is
a scattering of data very unlike the traditional
‘calibration-curve’ spectroscopists are more fa-
miliar with. The important aspect of the calibra-
tion model is not how well it fits a line, but
how well it can predict the concentration of the
constituent(s) of interest. This model has been
able to demonstrate a predictive capability with
residuals from the reference method having a
comparable standard deviation to that of the
reference KF titrimetric method.

Since, the calibration model accounted for
variables such as age of sample, sample-thick-
ness and ambient percent relative humidity, the
standard error of calibration (SEC) of 0.5% is
realistic. The positive effect of these variables
can be seen in the standard error of prediction
(SEP) which was calculated to be 0.2%. The
prediction (verification) samples were predomi-
nantly recent lots and the amount of material
was sufficient to present an adequate amount to
the probe during the spectra collection. This is
why the predictions are more accurate than the

SEC would seem to let them be and are better
represented by a SEP which combines the two
verification data sets (Tables 4 and 6) to give a
SEP of 0.2%. Having a SEC greater than the
SEP is an indication that the model does not
require the inclusion of any additional data-
points.

4. Conclusions

The NIR spectroscopic analysis of water by
diffuse reflectance using an InGaAs photodiode
array detector can generate accurate and precise
data for moisture sensitive compounds. It is an
efficient, non-invasive and non-destructive tech-
nique. It is imperative to establish an accurate,
valid, and robust calibration model incorporat-
ing all possible variations in the samples and
collection of spectra. Calibrations built in this
manner will predict reasonably well in the pres-
ence of future variations not represented in the
calibration. This is the most valuable property
of a robust NIR calibration model.

The method that is reported in this work de-
termines water content (weight percent) using
NIR diffuse reflectance spectroscopy in the en-
tire NIR region. It was demonstrated to be an
equivalent method to the reference KF titrimet-
ric method currently used for moisture analysis.
The robustness and accuracy of the model was
demonstrated by its ability to predict the mois-
ture level for future on-line or at-line monitor-
ing during the manufacturing of caspofungin
acetate drug substance.

This method shows great potential for future
on-line or at-line water determination measure-
ments during the manufacturing of caspofungin.
The powder may be in contact with the probe
or spectra may be collected through glass or
some other type of packaging material. A simi-
lar approach could be employed for other hy-
groscopic drug substances. With the trend
toward real-time monitoring and control of the
processes, it appears to be advantageous to em-
ploy NIR methodologies in moisture and or-
ganic solvent determinations.
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